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[1] We analyzed 13 years (1992—2004) of CO, flux data, biometry, and meteorology
from a mixed deciduous forest in central Massachusetts. Annual net uptake of CO, ranged
from 1.0 to 4.7 Mg-C ha™'yr~ !, with an average of 2.5 Mg-C ha™'yr . Uptake rates
increased systematically, nearly doubling over the period despite forest age of 75—110 years;
there were parallel increases in midsummer photosynthetic capacity at high light level
(21.5—31.5 pmole m 2s~ "), woody biomass (101—115 Mg-C ha™' from 1993—2005,
mostly due to growth of one species, red oak), and peak leaf area index (4.5—5.5 from
1998—-2005). The long-term trends were interrupted in 1998 by sharp declines in
photosynthetic capacity, net ecosystem exchange (NEE) of CO,, and other parameters, with
recovery over the next 3 years. The observations were compared to empirical functions
giving the mean responses to temperature and light, and to a terrestrial ecosystem model
(IBIS2). Variations in gross ecosystem exchange of CO, (GEE) and NEE on hourly

to monthly timescales were represented well as prompt responses to the environment, but
interannual variations and long-term trends were not. IBIS2 simulated mean annual
NEE, but greatly overpredicted the amplitude of the seasonal cycle and did not predict
the decadal trend. The drivers of interannual and decadal changes in NEE are long-term

increases in tree biomass, successional change in forest composition, and disturbance
events, processes not well represented in current models.
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1. Introduction

[2] Terrestrial ecosystems mediate a large portion of the
CO, flux between the Earth’s surface and the atmosphere,
with approximately 120 Pg CO,-C yr~ ' taken up by gross
photosynthesis and roughly the same amount respired back
to the atmosphere [Prentice et al., 2001]. Imbalances
between photosynthesis and respiration create CO, sinks
and sources, which in aggregate have accounted for uptake
of 1-2 Pg-C yr ' by terrestrial ecosystems between 1980
and 2000 [Battle et al., 2000; Ciais et al., 1995; Hicke et al.,
2002; Keeling et al., 1996; McGuire et al., 2001; Myneni et
al., 2001; Tans et al., 1990]. The magnitudes of sinks and
sources have fluctuated on annual and longer timescales
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owing to variable climate, land use change, disturbance by
fire and pests, and changes in the age distribution and
species composition of the ecosystem [Battle et al., 2000;
Barford et al., 2001; Dunn et al., 2007; Houghton, 2000].

[3] The relationships between controlling variables and
the net terrestrial CO, flux are not quantitatively understood
at the process level. Proposed mechanisms for recent net
uptake include legacies of prior land use and disturbance,
longer growing seasons, fertilization by rising CO,, and
deposition of industrial fixed nitrogen [Goodale et al., 2002;
Houghton, 2002; Schimel et al., 2000, 2001]. The factors
must be quantitatively understood in order to predict how
carbon storage will change with time [Schimel et al., 2001;
Wofsy and Harriss, 2002].

[4] Net ecosystem exchange of CO, (NEE) is the sum of
canopy photosynthesis (gross ecosystem exchange, GEE)
and ecosystem respiration (R), separate processes with
different physical and biological controls that are linked
over long timescales at the ecosystem level. In practice
these may be distinguished by equating GEE to the light-
dependent part of NEE, and setting R = NEE — GEE. (Note
that by convention, uptake of CO, from the atmosphere has
negative sign, so GEE <0 and R > 0.)

[5] Ecosystem respiration includes contributions from
autotrophs (vegetation) and heterotrophs (free living and
symbiotic microorganisms and fauna in the soil) [Bowden
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et al., 1993; Ryan and Law, 2005; Trumbore, 2006]. Field
studies of R have identified temperature, soil moisture,
nutrient availability, stocks of living and dead biomass,
ecosystem productivity, and seasonal carbon allocation as
controlling factors [Boone et al., 1998; Davidson et al.,
2006; Hogberg et al., 2001; Ryan and Law, 2005; Savage
and Davidson, 2001; Whitehead et al., 2004]. GEE is
controlled by canopy development and nutrient status, light,
temperature, ambient humidity, CO, concentration, and soil
moisture [Field and Mooney, 1986; Larcher, 1995; Ruimy et
al., 1996]. Mechanistic terrestrial ecosystem models typi-
cally use subsets of these factors to drive functions that
predict carbon fluxes. R is usually simulated as an expo-
nential function of temperature modified by soil moisture
[Davidson et al., 2006]. GEE is usually specified as a
function of ambient CO,, intercepted flux of photosynthe-
tically active radiation (PAR), foliar N, soil moisture, and in
many cases, vapor pressure deficit and temperature, with
parameters based on a combination of ecosystem-scale and
leaf-level measurements [e.g., McGuire et al., 2001; Adams
et al., 2004].

[6] Assessments of ecosystem carbon balance under
changing climate, based on these models, are very uncer-
tain [Davidson and Janssens, 2006]. Several studies predict
that increased ecosystem respiration could exceed produc-
tivity gains under rising CO, and temperature, creating a
net-positive feedback to the climate system [Cao and
Woodward, 1998; Doney et al., 2006; Friedlingstein et
al., 2006; Kirschbaum, 1995]. However, predictions of
climate-driven changes in R are highly dependent on the
assumed functional dependence on temperature [Joos et al.,
2001; Jones et al., 2003] and soil moisture [Fung et al.,
2005]. Recent work questions the control of R by tempe-
rature [Giardina and Ryan, 2000; Hogberg et al., 2001],
the timescales of the temperature response [Braswell et al.,
1997; Kirschbaum, 2004; Knorr et al., 2005; Reichstein et
al., 2005], and the assumed effects of soil moisture [Doney
et al., 2006].

[7] Long-term eddy flux data are powerful new integral
constraints on the carbon balance of whole ecosystems that
provide key data to help to elucidate underlying controlling
factors [Law et al., 2002; Sanderman et al., 2003]. Given
the significant interannual variability of midlatitude ecosys-
tem carbon exchange, decadal length carbon flux data are
necessary to identify secular trends in carbon exchange
associated with the gradual influence of ecosystem dyna-
mics, environment (e.g., CO, fertilization, nitrogen deposi-
tion) and climate change. These data are critical to testing
and improving ecosystem models, since, like the models,
they span timescales from hours to decades and represent
the whole ecosystem.

[8] We report here a 13-year study of NEE in a New
England mixed deciduous forest (Harvard Forest), measured
using the eddy-covariance technique, intended to help
understand the current regime of carbon sequestration in
forest ecosystems, and to gain insight into the factors that
will control carbon balance in the future. Harvard Forest is
the longest-running eddy flux site in the world. The long-
term NEE, and validation against biometric data, have been
reported previously [Barford et al., 2001; Goulden et al.,
1996a, 1996b; Wofsy et al., 1993]. Now the data record
(1992-2004) is long enough to identify emerging long-term
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trends and to quantify the important effects and lingering
legacies of disturbance. Hence the goals of this paper are (1)
to quantify the instantaneous (hourly) ecosystem carbon
exchange response to controlling climate variables (temper-
ature and sunlight), averaged over a decade; (2) to separate
responses to climate and weather variations from underlying
changes in ecosystem processes and structure; (3) to quan-
tify long-term trends in carbon exchange and ecosystem
function; and (4) to assess the mechanisms responsible for
seasonal, interannual and long-term deviations of ecosystem
carbon exchange from decadal means.

[v] We developed a suite of empirical, ecophysiologi-
cally-based models (denoted “Model-0”, and variants) to
quantify the mean functional responses of carbon exchange
to weather (sunlight, temperature, soil moisture) and season.
Mean ecosystem responses were obtained as a model fit to
the decade-long, internally consistent data set of NEE,
temperature, light, and canopy development (79,000 hours
of data at Harvard Forest), these were subtracted from
hourly, daily, seasonally and annually aggregated data to
identify deviations from mean behavior. We discuss both
short-term deviations and long-term trends in NEE, R, and
GEE with respect to key environmental and ecological
factors (e.g., biomass dynamics, disturbance, nutrient sta-
tus), and we identify the drivers of long-term net carbon
exchange.

[10] Dynamic ecosystem models attempt to simulate
allocation and storage of organic matter. We assess how
well these models capture the long-term patterns at Harvard
Forest, by comparing results from the Integrated Blosphere
Simulator - 2 (IBIS-2), to Model-0, which does not simulate
pools of organic matter. IBIS-2 is a global ecosystem model
based on dynamic biosphere—climate system interactions
[Foley et al., 1996; Kucharik et al., 2000, 2006], driven here
by Harvard Forest weather.

1.1. Site Description

[11] NEE, fluxes of latent and sensible heat, and associ-
ated meteorological variables have been measured since
1989 at the Harvard Forest Environmental Monitoring Site
(HFEMS), located on the Prospect Hill tract of Harvard
Forest (42.538N, 72.171W, elevation 340 m) [Goulden et
al., 1996a; Wofsy et al., 1993]. The area surrounding the
tower is dominated by red oak (Quercus rubra) and red
maple (Acer rubrum), with scattered stands of Eastern
hemlock (Tsuga canadensis), white pine (Pinus strobus)
and red pine (P. resinosa) (see http://www.as.harvard.edu/
chemistry/hf/hfsite.html for further details, and http://
www.as.harvard.edu/data/nigec-data.html for data access).
The forest contained ~100 Mg-C ha™' in live aboveground
woody biomass (AGWB) when the HFEMS was estab-
lished [Barford et al., 2001]. About 1/3 of the existing red
oaks were established prior to 1895, another 1/3 prior to
1930, and the rest before 1940 (N. Pederson, Columbia
University, private communication, 2003); hence the stand
is 75—110 years old. Although the stand was affected by a
hurricane blowdown in 1938, many of the canopy trees now
present would have already been established in the under-
story. Nearly continuous forest extends for several km
northwest, west and southwest of the tower, the predomi-
nant wind directions. A small forested swamp is located
NW of the tower; it expanded in 2000 owing to beaver
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activity which has since ceased, leaving the flowage blocked.
In the summer of 2000, a selective, commercial harvest took
place 300 m to the S—SE of the tower, fortunately a direction
sampled rarely at the tower. The selective harvest removed
42.8 m® ha' of timber and 22.5 Mg-C ha' of AGWB on
43 ha.

[12] In 1993, 40 plots for biometric measurements were
established in stratified-random positions along eight 500 m
transects, running SW and NW from the tower along the
dominant wind directions [Barford et al., 2001] (ftp://
ftp.as.harvard.edu/pub/nigec/HU Wofsy/hf data/ecological
data/). Ongoing ground-based measurements include above
ground woody increment, leaf litter flux, leaf area index
(LAI), tabulations of tree mortality and recruitment, and
surveys of woody debris. Periodic measurements include
green foliage and leaf litter chemistry and soil respiration
during the growing season, and a recent study [Liu et al.,
2006] measured the respiration rates of coarse woody
debris.

1.2. Flux Measurements

[13] The eddy-covariance technique is used to measure
fluxes of CO,, momentum, and sensible and latent heat at
30 m at the HFEMS [Goulden et al., 1996b; Wofsy et al.,
1993]. The mixing ratio of CO, within the canopy is
measured at 8 levels (z = 29, 24, 18, 13, 7.5, 4.5, 0.8,
0.3 m). The flux of photosynthetically active radiation
(PAR) is measured above (29 m) and below (13 m) the
canopy. Vertical profiles of air temperature and relative
humidity are measured at 8 levels from 2.5 m to 29 m. Soil
temperature is measured using an array of 6 thermistors
buried at the base of the litter layer (10 cm) and two
additional thermistors at 20 cm and 50 cm. Upwelling and
downwelling PAR, total shortwave radiation, and longwave
radiation are measured by Atmospheric Sciences Research
Center (ASRC) at State University of New York (SUNY) at
Albany [Moore et al., 1996]. The ASRC group also measures
eddy fluxes of momentum and sensible heat at 30 m and
below the canopy (11 m). Radiation measurements obtained
by the ASRC group have been essential for filling gaps in the
PAR data set, and the existence of 3 sensors for measuring
above-canopy downwelling solar radiation has allowed us to
ensure the long-term stability of PAR measurements, a
critical detail for long-term studies of ecosystem function
(see Appendix A).

1.2.1. Time-Integrated Data

[14] To characterize the ecosystem carbon cycle, we must
integrate hourly measurements of carbon exchange and
driving climate variables to monthly, annual and decadal
timescales, requiring estimates of carbon exchange when
data are missing owing to power outages, equipment failure
or invalid data. Equipment failure and data rejection reduce
the average annual data coverage of our NEE measurements
to about 50%, a fraction typical of continuous eddy covari-
ance measurement sites [Falge et al, 2001a). Temporal
aggregation of the hourly NEE measurements is performed
using rigorously tested time-integration algorithms that
estimate missing hourly NEE observations with a robust
ensemble estimation approach (Appendix B). Nighttime
observations of NEE are used to estimate daytime ecosys-
tem respiration (NEE,;gn = R) proximate in time, enabling
the inference of the light-dependent portion of ecosystem
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exchange of CO, (GEE = NEE — R). We carefully estimated
the uncertainties and potential biases in annual sums of NEE,
R and GEE by comparing three variants of time integration
algorithms: non-linear regression, look-up tables, and diel
mean cycle (Appendix B) [cf. Falge et al.,2001a,2001b], the
latter being non-parametric. Because gap-filled data are
dependent on an assumed model structure, they are generally
not suitable for extracting other model parameters. Hence the
parameters of Model-0 were obtained using only unfilled
data for hourly NEE.

[15] Missing environmental data must also be estimated
to analyze carbon exchange, especially hourly PAR and air
temperature, and daily precipitation and soil moisture
(Appendix B). Most environmental data can be assembled
using actual observations from nearby meteorological sta-
tions (Appendix A). Continuous soil moisture profiles were
measured at the site only between 1997—-1999 (K. E. Savage
and E. A. Davidson, personal communication, 2000). We
used these data to parameterize a simple two-layer soil
hydrology model (see Appendix D), providing continuous
estimated values constrained by hundreds of observations
and driven by meteorology data from the site. Growing
season soil moisture for the study was reconstructed with
the calibrated soil hydrology model. The entire climate driver
data set is available at ftp://ftp.as.harvard.edu/pub/nigec/
HU_ Wofsy/hf data/Final/Filled/HF 9204 filled.

1.2.2. Modeling and Analysis
1.2.2.1. Model-0

[16] The empirical model (Model-0) uses the homoge-
neous, internally consistent Harvard Forest NEE and cli-
mate data sets to represent the instantaneous ecosystem
response to temperature and sunlight within a given season
and phenological period, using equation (1). Parameters a;
and a, define respiration and its short-term temperature
response, respectively, and parameters a3 and a, modify
the rate of canopy photosynthesis. The driving variables are
air temperature at 2.5 m (T), its seasonal mean ((7),.ca1),
and above-canopy PAR.

as *PAR

NEE = *(T — (T PR[* —————.
ar + a* (T = (T) yyean) + @ T PAR

(1)

Observations of light attenuation that capture the develop-
ment of the canopy, i.e., the PAR ratio index (PRI), are
included as a driving variable in the late spring (Appendix C).

[17] To parameterize Model-0, nine years (1992—2000)
of hourly, u* filtered NEE, T, and PAR observations were
sorted into 8 phenologically defined seasonal periods,
ranging from 25 to 125 days in length (see Appendix C).
During the dormant seasons (late fall and winter), there is
still some weak uptake of CO, due to conifer photosynthe-
sis; in these time intervals ecosystem dependence on PAR
was simplified to a linear response (a;*PAR). A non-linear
least squares procedure (tangent-linear) was used to derive
the set of optimized Model-0 parameters for each season for
a total of 30 parameters, {a;,}, where i=1—3 (equation (1)),
and m = 1—8 (season), and {a4 ,}, m=1—6 (see Appendix C).
1.2.2.2. Model-0 and Soil Moisture

[18] Analysis of the residuals between CO, flux data and
Model-0 at seasonal scales indicates a dependence of NEE
on soil moisture in the mid-summer, but not during other
seasons. There was no significant correlation between
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ecosystem respiration (nighttime NEE, either observed or
Model-0 residuals) and soil moisture in any season, even
though small-scale (chamber) studies have identified soil
moisture as an important factor influencing soil respiration
at Harvard Forest [Savage and Davidson, 2001]. Previous
analyses of CO, fluxes, climate data [Freedman et al.,
2001] and leaf level studies [Cavender-Bares and Bazzaz,
2000] at Harvard Forest have indicated the importance of
drought stress limitations on photosynthesis under certain
conditions. Hence we evaluated the role of soil moisture at
HFEMS by incorporating this factor into variants of the
Model-0 formulation.

[19] Soil water content was measured as ~6 hour ave-
rages using TDR probes inserted horizontally into the soil at
4 levels, in both well drained upland and poorly drained
wetland soil plots located 150 m NW and 150 m SW of
the HFEMS tower, respectively (K. E. Savage and E. A.
Davidson, personal communication, 2000). We used the soil
moisture profiles for 1997—1999 to parameterize a simple
two-layer bucket-type soil hydrology model (Appendix D).
The algorithm design is similar to the water balance
methodology used to calculate Palmer soil drought indices
[Palmer, 1965], with the soil profile divided into a shallow
“surface layer” and a deep “under layer” (See Figure D1 in
Appendix D). Model simulations of surface layer and under
layer volumetric soil moisture content spanning the growing
season (DOY 100-300) were computed with a 5-day time
step. Five-day sums of latent heat flux, measured on top of
the HFEMS tower, and precipitation, measured at a meteo-
rological station 1.5 km away, drive the model. Four
adjustable parameters define (1 and 2) the water capacity
of the soil in each layer, (3) the flux of water between the
soil and the atmosphere, and (4) the transport of water from
the surface layer into the under layer. Two additional model
parameters control water loss from the under layer during
periods of strong water depletion. The depth of the bucket
model layers were fixed to match the depth of the soil
moisture probes in the measurement pits, and the bucket
model parameters were optimized to fit the in situ soil
moisture observations (K. E. Savage and E. A. Davidson,
personal communication, 2000). Independent model param-
eters were derived for well-drained and poorly drained soils
(Table D1 in Appendix D); parameters were optimized
using the genetic algorithm [Carroll, 1996].

[20] The reconstructed soil moisture time series from the
two-layer model (above) were used to drive three modified
versions of Model-0 for Harvard Forest (Model-Oa, b, c),
in order to define the effects of variability in soil moisture
and to explore the best model representation of these
effects. The Model-0a equation includes a function of soil
moisture that may be interpreted as an additional respira-
tion term and was designed to test for a soil moisture role
in regulating ecosystem respiration. The Model-Ob equa-
tion simulates soil moisture stress on photosynthesis by
multiplying the GEE term by a soil moisture stress factor
(see Appendix D).

[21] The third modified form of Model-0 (Model-Oc) uses
a hydraulic resistor/capacitor-type algorithm to calculate
canopy water potential [Jones, 1978], which is then inte-
grated into the basic Model-0 equation. Water retention
curves (K. E. Savage and E. A. Davidson, personal com-
munication, 2000) were used to convert the estimated
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volumetric soil moisture to matric potential (Us). The daily
canopy water potential was assumed to behave periodically
and to depend on light, as calculated using equation (2). The
canopy matric potential (W) was included as an additional
term in the original Model-0 equation that modifies gross
carbon assimilation (equation (3)). Equations (2) and (3)
were solved iteratively to obtain the optimized parameter set

{ai,..., as; C, D} for each season.
% = (Ug — We)*C — D*E, )

where E = {1 + a5 *U}* Zii};’jﬁ,
NEE = ay + ay[T — (T)] + {1 + a5*\PC}*%. (3)

[22] In the hydraulic resistor/capacitor equation
(equation (2)), W5 and W are the matric potential of the soil
and canopy, respectively; the product DE is the canopy water
transpiration rate, and C is the time constant for refilling the
canopy with water. Model-Oc uses GEE as a proxy for the
canopy transpiration flux and parameter D is equivalent to 1/
(ac), where c is the canopy water capacitance and « is the
canopy water use efficiency. The parameter as controls the
direction and magnitude of the U influence on NEE. Fitted
parameters and further description of Model-0a, b, ¢ are
presented in Appendix D, with results summarized in
Figure 13 in section 2.3.3 and Figure D4 in Appendix D.
1.2.3. IBIS-2

[23] IBIS-2, like most biophysical models of NEE, pro-
duces a representation of the mean ecosystem response
(e.g., carbon exchange with the atmosphere) to changing
environmental conditions above (e.g., cloudiness, precipi-
tation, temperature, wind, humidity), below (e.g., soil water
and temperature) and within (e.g., CO,, temperature, light,
water, wind) a vegetative canopy at a specific geographic
location. To calculate ecosystem response, IBIS (version 2.6)
utilizes several sub-models within a hierarchical conceptual
framework [i.e., Kucharik et al., 2000, Figure 1], which is
organized with respect to the submodels’ characteristic
temporal scales.
1.2.3.1. Land Surface Processes

[24] The land surface submodel simulates the energy,
water, carbon, and momentum balance of the soil-plant-
atmosphere system at a half-hourly time step using the LSX
land surface scheme of Pollard and Thompson [1995].
IBIS-2 includes two vegetation layers with eight potential
forest plant functional types (PFTs) in the upper canopy, and
two grass (cool and warm season) and two shrub PFTs in
the lower canopy. The model state description includes six
soil layers of varying thicknesses to a 4-m depth (0—10,
10-25, 25-50, 50-100, 100—-200, 200—400 cm), which
are parameterized with biome-specific root biomass distri-
butions of Jackson et al. [1996], and varied soil texture and
corresponding physical attributes. Physiologically based
formulations of leaf-level photosynthesis [Farquhar et al.,
1980], stomatal conductance [Ball, 1988; Collatz et al.,
1991, 1992] and respiration [Ryan, 1991] control canopy
exchange processes. Leaf-level photosynthesis is scaled to
the canopy level by assuming that photosynthesis is pro-
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Figure 1. Observed Net Ecosystem Exchange (NEE) at Harvard Forest EMS from 28 October 1991

through 31 December 2004. Only valid observations with u* > 20 cm s~ ' are shown.

portional to the absorbed photosynthetically active radiation
(APAR) within the canopy.
1.2.3.2. Vegetation Dynamics

[25] IBIS-2 can simulate changes in vegetation structure
on an annual time step by allowing plants to compete for
light and water from common resource pools. The compe-
tition between plants is driven by differences in resource
availability (light and water), carbon allocation, phenology
(evergreen, deciduous), leaf-form (needleleaf, broadleaf),
and photosynthetic pathway (C3 versus C4) [Foley et al.,
1996; Kucharik et al., 2000]. However, to compare with
observations in this study, the forest canopy height, maxi-
mum leaf area index (LAI), tree species composition and
phenological characteristics (date of budburst and leaf fall)
were prescribed using observations from Harvard Forest
[Kucharik et al., 2006].
1.2.3.3. Soil Biogeochemistry

[26] IBIS-2 accounts for daily flows of carbon and
nitrogen through vegetation, detritus, and soil organic
matter similarly to the CENTURY model [Parton et al.,
1987] and the biogeochemistry model of Verberne et al.
[1990]. The current version of the model does not account
for leaf nitrogen effects on photosynthesis, or the effects of
herbivory, disease, or weather-related disturbance on LAI
and accumulated biomass.

[27] IBIS-2 was driven by observed 30-minute meteoro-
logical data from Harvard Forest (1992—-2004), consisting
of air temperature, downward shortwave radiation, wind
speed, and relative humidity. Precipitation data were only
available at a daily time step; thus, half-hourly data were
derived by dividing the daily values by 48. Downward
longwave radiation was calculated using Brutsaert’s [1975]
formulae. For the purposes of parameterizing leaf-level
photosynthesis, the maximum rate of carboxylation (V,,4.)
was set at 55 pmol m > s ' (at 15°C [Williams et al.,
1996]). Dominant soil textural information (sand/silt/clay
fractions) was obtained from the STATSGO data set [Miller

and White, 1998]. The atmospheric CO, concentration was
set constant at 360 ppm for all simulations.

2. Results
2.1. Eddy-Covariance Observations

[28] From 28 October 1991 to 31 December 2004 there
were 51629 valid hourly NEE observations (out of a
possible 115,536), with the criterion that CO, flux and
storage were both measured and friction velocity (u*)
exceeded 20 cm s~'. The observations (Figure 1) show
the clear seasonal pattern of active photosynthesis and
respiration in the summer months and low respiration over
the winter. Interannual variations in the magnitude of
summer uptake rates, and summer and winter respiration
rates, are evident in the data. These observations are
integrated to compute sums over daily to annual intervals
using multiple filling algorithms (Appendix B). Wherever
the filled data are used we take the average of the three
approaches. Annual sums using the individual filling algo-
rithms agreed within 0.3 Mg-C ha™' yr~' for all years,
except 1998. Estimates of total net carbon uptake (13-year
sum) differ by less than 2% (range 31.7 to 32.1 Mg-C ha™ ")
among the filling procedures.

[29] The forest surrounding HFEMS has been a net CO,
sink each year throughout the study period (Figure 2 and
Table 1). Annual NEE averaged -2.5 Mg-C ha™' yr™', with
a range of —1.0 to —4.7 Mg-C ha~' yr ' (negative values
denote uptake from the atmosphere). Figure 2 and Table 1
include estimated uncertainties for the annual sums of NEE
derived using a comprehensive bootstrap procedure (see
Appendix B).

[30] The variability of annual NEE is dominated by
growing season processes (Figure 3); except in 1993,
anomalies of annual NEE from the 13-year mean closely
track anomalies in growing season NEE (r* = 0.79, p-value
<0.001). For example, extreme CO, exchange years 1998
and 2001 were 40% and 190% of the 13-year mean,
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Figure 2. (top) Annual sums of observed NEE at Harvard

Forest. Net uptake by the biosphere is negative. (bottom)
Annual sums of respiration (R) and gross ecosystem
exchange (GEE). R is derived from nighttime NEE and
scaled to full day by temperature responses determined over
moving windows. GEE is computed as the difference
NEE — R and integrated to annual sums. Note that the sign
of GEE is inverted (i.e., plotted as production to allow a
condensed scale on the y axis). The dashed lines show
linear least squares fits. P values for the NEE, GEE, and R
trends are 0.0376, 0.0002, and 0.001, respectively. With the
1998 anomaly, excluded p values are 0.0235, 3 x 107,
and 0.0018. The NEE error bars in the top plot are the 95%
confidence interval estimated using a comprehensive
bootstrap procedure (see Appendix B).

respectively; both of these NEE anomalies were driven by
anomalies in GEE (Table 1 and Figure 2) and reflect
activity predominantly in the growing season (Figure 3).
During ecological year 2001, Harvard Forest sequestered
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Figure 3. Annual sums of NEE for 1992-2004 (black line
with squares) are compared to sums of NEE over the
dormant (brown line with circles) and growing season
(green line with triangles). Annual sums are calculated for
“ecological years,” starting on 28 October which corre-
sponds to the ecosystem transition from carbon uptake to
release after the leaves have fallen. Dormant season is
28 October to 15 April and growing season is 15 April to
27 October. The annual trends and anomalies are most
closely matched by the growing season NEE sums.

4.7 Mg-C ha™' (Table 1). Although the annual sum of R in
2001 was near average, the magnitude of the annual sum of
GEE was one of the largest in the 13-year data set, indicating
that enhanced photosynthesis drove the large net uptake of
CO,. Conversely, weak GEE in 1998 resulted in anomalously
low net carbon uptake, despite slightly below-average R.

[31] The full 13 years of CO, exchange measurements
show trends of increasing R and GEE (Figure 2) significant
at the 99% confidence level. Ecosystem respiration and
GEE have increased by 2-3% yr~! since measurements
began, and the increase in GEE has exceeded the increase

Table 1. Annual and Seasonal Sums of NEE, R, and GEE at Harvard Forest From 19922004

Ecological Annual® Dormant® Growing”

Year” NEE 95% CI R GEE NEE R GEE NEE R GEE
1992 -2.2 —.225 +.375 9.6 —11.8 1.7 2.1 —0.4 -39 7.5 —11.3
1993 —1.5 —.466 +.305 12.0 —13.5 3.7 4.1 —0.4 —5.2 79 —13.1
1994 -1.7 —.294 +.304 10.6 —-123 22 2.6 —-0.4 -39 8.0 —11.9
1995 -2.8 —.237 +.360 9.8 —12.6 2.1 2.6 —0.5 —4.9 72 —12.1
1996 -2.0 —.388 +.255 11.2 —133 2.2 2.6 —0.4 —43 8.6 —12.8
1997 -2.1 —.231 +372 11.9 —14.0 2.5 29 —0.4 —4.6 9.0 —13.6
1998 -1.0 —.186 +.532 11.0 —12.1 2.6 3.1 —0.5 —3.6 8.0 —11.6
1999 -23 —.194 +.481 11.7 —14.0 2.1 2.6 —0.5 —4.4 9.1 —13.5
2000 -22 —.321 +.319 12.4 —14.5 2.5 3.1 —0.6 —4.7 9.3 —13.9
2001 —4.7 —.176 +.519 11.6 —16.3 2.1 2.4 —0.3 —6.8 9.2 —16.0
2002 -2.7 —.203 +.478 12.6 —15.2 2.6 32 —0.6 —53 9.4 —14.7
2003 -2.6 —.349 +.323 12.6 —153 2.5 2.9 —0.4 —5.1 9.8 —14.8
2004 —4.1 —.260 +.439 12.9 —17.1 3.0 3.6 —0.5 —7.2 9.4 —16.5
Mean —2.42 +0.03¢ 11.5 —14.0 24 29 —0.5 —4.9 8.6 —13.5
Standard 1.0 - 1.1 1.6 0.5 0.5 0.1 1.1 0.8 1.6

deviation

*"Ecological years™ are 28 October of preceding year to 27 October of the nominal year; for example, ecological year 1998 runs from 28 October 1997
through 27 October 1998. Dormant season runs from 28 October through 10 April of the following year; growing season is from 11 April to 27 October.

®Data are in Mg-C ha ' yr ' or Mg-C ha ™' season ™.

“Here 2x is the range from three different filling algorithms. Calendar year annual sums of NEE, R, and GEE are given Table B1, Appendix B.
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Figure 4. (a) Total annual leaf litter input and mid summer
LAIL LAI was measured on dates ranging from late July
through late August. LAI values for 2000—2002 were taken
from measurements made at a subset of BigFoot plots
[Gower, 2004], which fell within the same area sampled by
the HFEMS biometric plots. A comparison in 2005 of LAI
measured at the selected BigFoot plots and HFEMS plots
showed no significant difference, although methodological
consistency between measurements made at the two plot
groups is uncertain. Error bars show 95% confidence
intervals for variability among plots. (b) Season NEE versus
midsummer LAIL (c) Growing season sums of observed
GEE versus midsummer LAIL

in R, leading to a corresponding increase in the magnitude
of NEE (0.15 Mg-C ha~'yr~! more uptake), significant at
95% level. As with the anomalies in NEE annual sums, the
long-term trends in R and GEE are driven by growing
season carbon exchange, as demonstrated by the weak trend
in dormant season NEE (i.e., R) (Figure 3).

2.2. Biometric Data

[32] Observations of LAI have been made throughout
the growing season for most years since 1998 using the
LICOR LAI-2000 system at 30-40 fixed points surround-
ing HFEMS. From a low of 4.5 m?> m? in 1998, LAI
increased to about 5.5 m*> m 2 and has been steady since
2001 (Figure 4a; these values include a contribution of
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~0.9 m? m 2 from stems and twigs). Annual litter inputs
also increased slightly (Figure 4a and Table 2). Over the
period 1998—-2002, the residuals between growing season
NEE and Model-0, and growing season NEE and GEE,
have been significantly correlated with LAI (R* = 0.89,
0.87, 0.87, respectively) (Figures 4b—4c). Notably, the
GEE at high light levels (photosynthetic capacity) closely
tracked the trends in LAI (Figure 15 in section 3.2).

[33] Evidently the recent trends of increasing NEE and
GEE have been associated at least in part with thickening
of the canopy, prompting questions as to the driver of
increased LAI. The observed increase in AGWB (15%
over the period), primarily in red oak, is a likely candidate.
Over the past decade, annual aboveground woody incre-
ment (AGWI) varied between 1 and 2.5 Mg-C ha 'yr '
(not including mortality; see Figure 5a). Peaks in AGWI
(2002 and 2005) have lagged the peaks in NEE (2001,
2004) by one year. Annual mortality has been quite
variable. In part this variance is an artifact because tree
mortality can be protracted and our procedure accounts for
mortality through a single survey during the growing
season to find trees with no live foliage; dying trees are
not counted until all the branches have died. Furthermore
tree mortality follows episodic stress events, which also con-
tributes to large variance. AGWB has increased steadily
from 101 Mg-C ha ' in 1993 to over 115 Mg-C ha ' in
2005, for an average annual increment of 1.04 Mg-C ha™'
(including mortality). This increment should comprise about
half of the total biometric carbon budget at the site, as
previously shown for 1993-2000 [Barford et al., 2001];
increases in woody roots, coarse woody debris, and soil
carbon contributed the other half. Red oak AGWB increased
by more than 20% in the 12 years between 1993 and 2005
(Figure 5b), while the total woody biomass of all other
species increased by ~7%. The flux of oak leaf litter appears
to have increased by ~15% in the 5 years for which we have
data, 1998—2003 (Table 2), consistent with this view.

2.3. Model-0 Analysis

[34] The Model-0 parameters {a; ,} given in Figure 6 and
Table 3 have clear biophysical significance. The mean
monthly respiration parameter, a,, increases approximately
linearly with monthly mean temperature <T> .., reflecting
increased metabolic rates and living biomass in warmer
months. Slowing of respiration from early summer to late
summer clearly emerges in the parameters {a; ,,,} (Figure 6).
Savage and Davidson [2001] observed this effect in their
chamber data from the Harvard Forest site and attributed it

Table 2. Annual Leaf Litterfall at Harvard Forest From 1998—
2004*

Year Total Oak Maple Other spp
1998 1.27 0.63 0.34 0.30
1999 1.42 0.67 0.35 0.40
2000 1.27 0.58 0.34 0.36
2001 1.42 0.69 0.34 0.39
2002 1.37 0.71 0.23 0.43
2003 1.48 0.71 0.32 0.45
2004 1.41 NA NA NA
2005 1.60 NA NA NA

Unit is Mg-C ha™".
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Figure 5. (a) Gross annual fluxes in live above ground

woody biomass with 95% confidence limits of mortality and
the sum of growth + recruitment. Growth, shown by the
green bars, is determined from diameter measurements of all
trees >10 cm in diameter at breast height (DBH), which are
converted to biomass using allometric equations [7ritfon
and Hornbeck, 1982]. Blue bars show the recruitment of
new trees into the >10 cm DBH size-class. Red bars show
losses from the live biomass pool due to mortality, which is
determined once per year at the peak of growing season by
observation that a tree has no living foliage. Annual fluxes
for 1994—1997 are given as a multiyear average because
annual biomass surveys were not conducted during that time
period. Note that the difference between growth and
mortality is not the carbon balance of the site. See Barford
et al. [2001] for a full accounting of the site carbon balance.
(b) Total living aboveground biomass in trees >10 cm
DBH. Each bar is divided by the contribution from red oaks
and all other species. Oaks account for most of biomass
increment; red maple is not growing significantly, and other
species make a minor contribution to the total biomass.
Horizontal lines provide references for assessing growth of
oaks versus all other species.

to limited soil moisture; it might also reflect depletion of the
labile organic matter from the previous year’s litter or
reduction in root activity as the growing season nears its
end. The ratio —as/a4 corresponds to canopy quantum yield
at low sun angles; Model-0 obtains values (0.05 to 0.06)
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consistent with expectations based on maximum quantum
yields for C; plants (0.06 to 0.07) [Farquhar et al., 1980],
allowing for photon reflection and absorption by soil and
stems.

2.3.1. Hourly Timescale

[35] The Model-0 fits for hourly data in each month are
illustrated in Figure 7 for a typical year. During summer
predicted NEE closely matches observations because varia-
tions are largely driven by the strong dependence of GEE on
light, but in winter, when NEE is dominated by R with a
weak dependence on temperature, the fits are poor. This
pattern is repeated for all years (Figure 8); R? values exceed
0.8 for summer months but approach 0 in winter.

2.3.2. Longer Timescales

[36] Model-0 predictive skill diminishes as longer aggre-
gation intervals are considered. At monthly scales the
predicted NEE and GEE still match the observations quite
well; R? values exceed 0.9 for comparison of predictions
and observations. The relationship between monthly pre-
dicted and observed R has an R? of 0.84, with somewhat
more scatter evident. For seasonal intervals, the R? for
predicted and observed NEE, GEE, and R are 0.97, 0.97,
and 0.88, respectively (Figure 9), but the apparently good fit
is illusory because it largely captures the annual cycle;
deviations of seasonal sums from the mean cycle over 13
years are not well simulated (see Figure 10). Fitting statis-
tics for the phenological seasons are given in Table 4.
During the dormant seasons, the predictions have large
biases, and slopes of a linear fit versus temperature differ
from Table 3. R? values are low (or negative, implying that
the variance of the residuals (Model-Observed) is larger
than for the observations alone for this aggregation interval)
in the dormant season and rise to maximum values of 0.65
for early summer season.

[37] Annual sums of NEE, GEE and R are not well
captured by Model-0. The model does account for about half
of the anomalies in 1998, 2001 and 2004, but observed long-
term trends in NEE, GEE and R are not associated with trends
in environmental forcing parameters (Figure 11).

[38] The simple PAR and T relationships of Model-0 best
describe the hourly to seasonal-scale variability of NEE in
the early growing season. This is the period when the
ecosystem is most responsive to sunlight and temperature;
the canopy is newly developed and daily insolation is at its
maximum. The ecosystem is typically well watered and
processes related to soil moisture, such as plant water stress,
are usually unimportant. However, we observed that wind
direction, which affects the contribution from wetlands and
coniferous stands, and the phenology index were important
variables in spring; these drivers vary on daily and longer
timescales.

2.3.3. Soil Moisture Influence

[39] During most intervals, Model-0 residuals had no
significant relationship to soil moisture for either seasonal
or monthly intervals. However, summertime NEE residuals
were affected, being more positive (i.e., weaker uptake) at
low soil moisture, and August NEE showed a significant
dependence on soil moisture (R = 0.48, p < 0.05). Figure 12
shows the relationships of ecosystem respiration (nighttime
NEE), daytime NEE, as well as Model-0 residuals with
estimated soil moisture for the midsummer season. Night-
time NEE (respiration) had no significant correlation to soil
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Figure 6. Model-0 parameter values plotted against time of year for the eight seasonal periods (see

Appendix C).

moisture, in mid-summer or at any other time, contrary to
expectations. The correlation between observed daytime
NEE and soil moisture was significant (p < .1, r* = 0.32,
t = —1.55), as was the relationship with Model-0 residuals
(p <.05,R*=0.45,t=—2.42).

[40] The simple model of canopy matric potential
(equations (2) and (3)) improved model accuracy for
NEE in midsummer by reducing modeled CO, uptake under
dry soil conditions, and even captured much of the diel
cycle of NEE (see Figure D4 in Appendix D). The output
of Model-0 with canopy matric potential is a significant
improvement over the basic Model-0 for mid-summer,
yielding a 40% reduction in RMSE (see Table D2 in
Appendix D), and capturing ~70% of interannual variability
in this season (Figure 13 and Table D2 in Appendix D). Most

Table 3. Optimized Model-0 Parameters and Fitting Statistics®

ofthe improvement is seen in dry years (1995, 1998, 1999) in
which systematic afternoon depression of GEE was most
significant (see Figure D4 in Appendix D).

2.4. IBIS-2 Analysis

[41] To test whether a mechanistic ecosystem model
could capture observed patterns in NEE, we simulated the
HFEMS data using IBIS-2, driven by observed meteorology
and initialized with site characteristics (section 1.2.3).
Figures 11 and 14 show annual and monthly sums, respec-
tively. IBIS-2 simulations reproduced the 13-year annual
mean NEE at HFEMS (observed = —2.5 Mg-C ha ' yr ™!
versus IBIS-2 = —2.3 Mg-C ha ' yr '), but failed to
capture the interannual variability of NEE (Figure 11,
top). Moreover, seasonal variations were not well simulated,

Season Range N al a2 a3 a4 <T>mean RMSE MAE r
Late fall 301-340 4114 2.15 0.06 0.00 NA 3.4 1.61 1.17 0.10
Winter 341-100 13,654 1.24 0.01 0.00 NA -2.5 1.86 1.03 0.00
Early spring 101-130 3403 2.85 0.16 —4.28 237 9.0 1.72 1.22 0.39
Late spring® 131-160 3286 3.70 0.20 —35.19 571 13.9 3.02 2.15 0.79
Early summer 161-205 4250 5.49 0.24 —36.62 597 19.0 45 3.28 0.83
Midsummer 206-250 3765 4.88 0.25 —31.77 525 19.1 4.54 3.18 0.80
Late summer 251-275 2649 3.63 —0.01 —24.39 489 14.5 3.51 2.51 0.79
Early fall 276-300 2790 2.62 0.07 —8.15 376 9.2 2.66 1.89 0.43

Model-0 is calibrated using hourly observations of u* - filtered NEE, PAR, and T for DOY 301, 1991, through DOY 300, 2000. Season is Model-0
season, range is DOY range for Model-0 season (see Appendix C), and N is number of valid observations used in calibration. Units are as follows: a;,
pmole CO, m2s !l a,, pmole CO, m2s7'°C; as, pmole CO, m s a,, pmole-photons m =257 and <T>ean, °C. RMSE, root mean square error;

MAE, mean absolute error; 12, coefficient of determination.
®Late spring data were obtained using PRI (see text and Appendix C).
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Figure 7. Scatterplots of predicted and observed hourly NEE at the HFEMS tower shown for each
month of the year 1994. The lines are 1:1 lines. Predictions are poorly correlated to observations in winter
months, but track each other closely in June—August. Similar patterns were observed in the other years.

NEE in units of gmole CO, m 2 s~

indicating that agreement between the IBIS-2 annual mean
and the observations is coincidental. The efflux predicted by
IBIS-2 in the dormant season is below the observed R, by
1.4 Mg-C ha~' yr~! on average, offset by positive bias in
growing season R (1.7 Mg-C ha~! yr=!). The amplified
seasonal cycle in IBIS-2 (Figure 14b) indicates excessive
response of R to temperature in the model.

[42] IBIS-2 predicts winter soil temperatures much colder
than observed (as much as —3.5°C [Kucharik et al., 2006]),
a major reason for the underestimate of R in the dormant
season. IBIS surface soil temperatures drop below 0°C for
much of the winter, in contrast to observations which
indicate temperatures typically 1°-2°C above freezing
[Kucharik et al., 2006] due to insulation by snow. IBIS
heterotrophic R is effectively zero in the midwinter and
autotrophic R is extremely weak. Hence the sophisticated
treatment of soil in IBIS-2, including explicit carbon pools
and detailed 8-layer soil submodel, is no better than Model-0

for predicting the hourly, monthly, or seasonal-scale variabil-
ity in R during the dormant season, and Model-0, by design,
has better mean values. Physical processes such as depth and
porosity of snow [Musselman et al., 2005; Sommerfeld et al.,
1996], presence of ice layers and frozen soil [van Bochove et
al., 2001], and short-term variation driven by winds [7akagi
et al., 2005] that are not simulated in the model, may be
important contributors to variability of NEE in the dormant
season.

[43] Springtime canopy development is premature in IBIS
compared with in situ LAI and phenological observations
[Kucharik et al., 2006], resulting in spring GEE roughly
1 Mg-C ha' greater than the observed. In principle, bias
from using a fixed phenology could be corrected by driving
the model with variable phenology derived from observa-
tions, at the sacrifice of predictive capability. Prediction of
phenology appears to be a general problem for all ecosys-
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Figure 8. Coefficient of determination between Model-0 predicted and observed NEE at HFEMS for
monthly averages. R? approaches 0.9 in the summer months, but drops to nearly 0 in the winter.
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Figure 9. Seasonal sums of NEE, GEE, and R predicted by Model-0 are compared to observations.
Dashed lines are 1:1 line. The solid line is the least squares fit. Overall the predictions match the
observation, but within any one season there is considerable scatter.
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Figure 10. Model-0 predicted and observed NEE, GEE and R for summer seasons are shown in the top
three plots. Model-0 predicted and observed NEE in the winter is shown in the bottom plot.

tem models, and our data show that the implications for
carbon cycle simulations are quite large.

3. Discussion

[44] During the growing season, physiological responses
to weather were the dominant factors contributing to vari-
ance in net CO, exchange. Strong dependence of GEE on

light overwhelmed other sources of variance, and a simple
statistical model described NEE variability well, even
though variations in R were poorly simulated. Weather-
driven variance of NEE and GEE dominated total variance
for hourly, monthly, and seasonal timescales. Variations in
annual sums of NEE were caused by year-to-year differ-
ences in GEE, with the exception of a notable anomaly in
1993 [Goulden et al., 1996a]. IBIS-2 also produced rela-

Table 4. Model-0 Predicted NEE Versus Observed NEE for Season Timescale®

Season N <obs> MAE RMSE a0.se al al.se r R?
Late fall 9 1.93 0.35 0.47 6.80 2.61 —2.59 1.39 —0.576 —0.306
Winter 9 1.22 0.24 0.32 17.57 12.01 —13.4 9.84 —0.458 —0.032
Early sprin% 9 1.26 0.28 0.32 0.32 0.86 0.71 0.64 0.388 0.125
Late spring 9 —0.90 0.48 0.70 —0.28 0.21 0.62 0.13 0.879 0.482
Early summer 9 —5.13 0.38 0.46 0.37 1.53 1.07 0.29 0.808 0.651
Midsummer 9 —4.10 0.58 0.65 0.01 2.24 1.03 0.56 0.572 0.327
Late summer 9 —1.76 0.55 0.73 —1.28 1.07 0.26 0.55 0.177 —0.215
Early fall 9 0.83 0.19 0.23 0.18 0.48 0.85 0.63 0.452 0.198

Data are based on 5-day aggregates (see text). Statistics are based on intercomparison Model-0 with observations for DOY 301, 1991, through DOY
300, 2000. Seasons are the phenologically defined seasons used in Model-0 development and analysis; see Appendix C. N is number of valid observations
used in calibration. Unit of <obs>, MAE is yumole CO, m 2 s~!; <obs>, mean of observations; RMSE, root mean square error; MAE, mean absolute error;

. . siduals
r, correlation coefficient; R =1 — var(residuals)
var(obs)

NEE versus observed NEE (NEE,s = a0 + al*NEE.q).
°Late spring data obtained using PRI (see text and Appendix C).

. Here a0 and al (a0.se and al.se) are intercept and slope (standard error) for linear regression of Model-0
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Figure 11. Annual sums of observed and predicted NEE,
R, and GEE at the Harvard Forest EMS. Annual sums are
computed for “ecological” years, that are selected to start
on the approximate date when photosynthesis ends in the
fall (DOY 300). The solid line with black squares indicates
the observed annual NEE, with 95% confidence intervals as
in Figure 2. The dashed line with diamonds indicates the
annual sums predicted from Model-0. Vertical segments
show the 90% confidence interval for the predicted values
based on generating 1000 predictions using model para-
meters drawn from a Gaussian distribution around the
computed coefficients. Annual sums predicted from the
IBIS-2 model are shown by the solid line with solid square
markers.

tively good agreement with GEE observations during the
growing season, but its incorrect values for R caused NEE
to be too positive (too little uptake). Phenology and soil
moisture explained some additional variance. Despite
expectations that moisture would be an important factor
predicting variability in NEE, it was important only during
midsummer periods. At other times of year this ecosystem
apparently has sufficient access to water to prevent moisture
stress from affecting canopy photosynthesis.

[45] Surprisingly, soil moisture did not affect ecosystem
respiration. The response of soil respiration at small spatial
scales to changes in soil moisture depends on the initial
state: Wet soils respire more as they dry out, whereas dry
soils respire less [Savage and Davidson, 2001]. Flux tower
measurements aggregate over a large heterogeneous foot-
print, and responses by wet and dry soils in the tower
footprint appear to compensate, leaving no observable
response.

[46] Perhaps more surprising, within a season, R also
failed to correlate to changes in temperature (soil or air),
possibly likewise reflecting differing responses from diffe-
rent parts of the ecosystem. Variability of respiration was
poorly predicted at all timescales and in all seasons, except
spring, by both IBIS-2 and Model-0. Over the seasonal
cycle temperature is a predictor of R, but of course many
other components of the ecosystem such as active biomass
[Davidson et al., 2006] and pools of labile detritus are also
changing. Evidently temperatures in the ecosystem cannot
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be taken as the direct driver of R, as often used by models. It
is important to note that the poor simulation of R accounts
for the difficulty in simulating interannual variations of
NEE.

[47] We note that for IBIS-2, poor simulation of R was
partly due to (1) the functional form and/or parameterization
of R dependence on temperature, and (2) poor simulation of
soil temperatures in both summer and winter. Hence, despite
explicit representation of carbon pools and land-surface
physics (including snowpack), IBIS captures little of monthly
or longer timescale variability of R. Failure to capture the
variability of dormant season R suggests that the representa-
tion of soil respiration in IBIS-2 (as in Model-0, and most
models of terrestrial ecosystem carbon exchange) is flawed
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Figure 12. Midsummer (DOY 206-250) NEE and
Model-0 NEE residuals versus simulated midsummer mean
soil water matric potential. YY markers denote year (e.g.,
99 = 1999). NEE is in units of Mg-C ha™' yr '; matric
potential is in units of MPa. (top) Observed nighttime NEE.
(middle) Observed daytime NEE, R?=0.32, t= —1.55; the
correlation is statistically significant at the 90% confidence
level. (bottom) Model-0 NEE residuals (observed —
predicted), R* = 045, t = —2.42; the correlation is
statistically significant at the 95% confidence level. Soil
water matric potential was estimated using the bucket
hydrology model simulated volumetric soil moisture and
water retention curves for Harvard Forest [Savage and
Davidson, 2001].
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Figure 13. Midsummer (DOY 206-250) Model-0 NEE
predictions with and without soil moisture drivers, com-
pared to observed NEE. YY markers denote year (e.g., 99 =
1999). NEE in units of pmole CO, m™2 s~ '. Markers in
squares are Model-0 predictions with soil moisture driver
(Model-0Oc, section 1.2.2, equations (2) and (3)). The solid
line is obtained from a linear least squares analysis of
Model-0c NEE versus observed NEE. Best fit R* = 0.71
with a slope of 1.17 and an intercept of 0.70 moleCO, m >
s~ !. Linear least squares analysis of Model-0 predicted NEE
without soil moisture drivers yields a best fit R* = 0.18. The
dashed line is 1:1 line.

and may hamper the ability of terrestrial ecosystem models to
simulate accurately changes in carbon stocks for climate-
change scenarios.

3.1. Seasonality

[48] The date of canopy development varies by up to
3 weeks in the spring, an important factor for annual carbon
exchange. No trend was been observed in spring canopy
development at Harvard Forest, but a trend in the growing
season end date (defined by the fall inflection in the NEE
cumulative sum curve) did emerge. From 1992 to 2004, the
end of the growing season was delayed 1 day yr~' (R* =
0.70, p < 0.05), accompanied by an increase in October net
uptake that accounts for ~15% of the trend in annual CO,
sequestration (0.3 Mg-C ha™' of 1.9 Mg-C ha~' from
1992—-2004; see Figure 2). Our data are insufficient to
distinguish whether the shift in termination of uptake is
due to delayed senescence or to overall increased canopy
photosynthetic capacity.

3.2. Photosynthetic Capacity

[49] Canopy light use efficiency increased significantly,
and steadily, over time, punctuated by a disturbance event in
1998 that lasted until 2001. Figure 15a (see Figure 4) shows
this trend, measured by GEE at near-saturating light levels.
The observed pattern corresponds in part with the trend of
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increasing LAI after 1998 (Figure 4), but LAI apparently
reached a plateau while photosynthetic capacity continued
to increase. Canopy data (LAIL foliage lignin and nitrogen
content (S. Ollinger, University of New Hampshire, per-
sonal communication, 2004)) suggests the low GEE ob-
served in 1998 may be linked to ecological stress or trauma
that damaged the foliage or retarded canopy development,
and in situ measurements of LAI show the canopy devel-
opment was stunted in early June (Figure 15c).

[s0] Several events in 1998 could have damaged the
canopy. The snow cover in 1998 was scant, allowing deeper
frost penetration; there was a widespread ice storm in the
winter of 1998 although severe damage was not apparent in
the vicinity of Harvard Forest; the spring was warm and
canopy development commenced in mid May, followed by
a frost event with nighttime minimum temperature of —2°C
on 5 June; severe thunderstorms passed through the area on
30-31 May, with 56 mm of rain observed at Harvard
Forest, and reports of hail and damaging winds in nearby
towns; and finally, the remainder of June was unusually
cloudy and rainy, with the lowest total sunlight for June of
any year in the data. We cannot directly attribute the
apparent damage to the canopy to any one or combination

NEE

Mg-C ha 'month™

jul92 julod juloé julog juloo julo2

Figure 14. Monthly averages of (a) NEE, (b) R (b), and
(c) GEE are shown for IBIS-2 predictions (open symbols with
dashed line) and compared to observations (solid symbols).
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Figure 15. (a) GEE versus light curve during the month of
July for each year (1992—2004) at the HFEMS. Symbols
show the average GEE and PAR within 50 pgmole m s ™'
PAR bins. (b) Mean and median GEE for each year 1992—
2004 within the window of optimum PAR (1250-
1500 pmole m %s™'). Note the steady trend toward
increased photosynthetic uptake, punctuated by an anomaly
in 1998, and recovery over the following two years. (c)
Seasonal pattern of LAI at the HFEMS plots. LAI is similar
up to day 150 in 1998 (blue line) and 1999 (red line), after
which it continues to increase in 1999, but not in 1998. LAI
at the BigFoot plots was only measured once or twice per
year in the midsummer during 2000—2002 [Gower, 2004].
Solid symbols highlight the observations that were selected
to show in Figure 4.

of these events, but it is clear that some disturbance event(s)
retarded canopy development, and this event had a legacy of
decreased canopy photosynthetic capacity for at least two
years. A rebound (i.e., release of stronger trees) from this
event may have contributed to increased photosynthetic
capacity and GEE in 2001 and beyond. An important
corollary of 1998 events is that weather anomalies occurring
at sensitive times can have disproportionately large and
long-lasting impacts on the capacity for carbon uptake in a
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forest ecosystem. This is an important issue when deciding
how long eddy-covariance towers need to be emplaced to
measure ecosystem mean properties; clearly predictions of
carbon budgets should consider not only mean climate, but
also the variability and probability of extreme weather
events.

3.3. NEE and Growth

[s1] Comparisons of NEE and AGWI indicate a 1-year
lag between uptake and tree growth. Years with peak carbon
uptake (2001, 2004) directly precede years of peak AGWI
(2002, 2005). This behavior is not unexpected, since car-
bohydrates stored during favorable growing seasons are
used the following year to support growth [cf. Barford et
al.,2001]. However, the observed lag is notably shorter than
the 3—6 years reported by Krakauer and Randerson [2003]
for tree rings to respond after volcanic eruptions.

3.4. Long-Term Trends, Disturbance, and Anomalies

[52] A goal of this analysis was to partition the source of
specific carbon exchange anomalies into climatic versus
ecological driving factors. For example, the magnitude of
growing season GEE in 1998 was 1.9 Mg-C ha™' below the
13-year mean, leaving a deficit in NEE of +1.3 Mg-C ha ',
in spite of early canopy emergence in the spring and below
average ecosystem R for the year (—0.5 Mg-C ha™').
Model-0 analysis indicates about half of the early summer
NEE anomaly (0.4 of 0.7 Mg-C ha™") could be attributed to
low insolation and cool temperatures. The balance of the
deficit in growing season uptake was a consequence of
reduced photosynthetic capacity: in the late spring, GEE
and net uptake were significantly less than anticipated on
the basis of PAR, temperature, and canopy development
(Figure 15), and photosynthetic efficiency continued below-
average throughout the growing season. As noted above,
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Figure 16. Cumulative NEE for each ecological year
(1 November to 31 October), November 1991 to October
2004.
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this anomaly is associated with anomalies in many other
parameters, and appears to reflect a disturbance event with a
significant legacy.

[53] In 2001, net carbon uptake by Harvard Forest was
nearly twice the 13-year mean. R was near average in 2001,
and prior to canopy emergence, the cumulative sum of NEE
was near the 13-yr mean (Figure 16). Thus GEE in the
growing season alone accounts for the anomaly. Canopy
development in 2001 was the earliest (Figure 16) and the
start of the growing season was 9 days earlier, relative to the
13-year mean (defined by inflection point in cumulative
NEE trace). The 2001 snowpack was unusually deep and
persisted late into the spring. The onset of warm weather
melted the snow quickly, and absence of soil frost allowed
the soil to drain and warm quickly.

[s4] Even though the late spring of 2001 was the most
productive of the study period, the early canopy development
and favorable spring weather conditions were responsible for
only ~20% of the anomalous annual NEE observed in
ecological year 2001 (0.5 of 2.2 Mg-C ha™'). Anomalously
high GEE, average R, and the resulting high net uptake,
continued throughout the growing season, with CO, uptake
exceeding the 13-year mean by nearly 40% (1.70 Mg-C ha™").
Model-Oc captures about 40% of the 2001 anomaly with the
combined effect of early growing season onset, favorable
summer weather conditions, and extended duration of the
growing season (~0.9 of 2.2 Mg-C ha™"). More than half of
the anomaly appears to be due to ecological and/or environ-
mental factors that increased canopy photosynthetic efficien-
cy (Figure 15b).

[55] Many anomalies in NEE observed at HFEMS between
1992 and 2004 were correlated with climate anomalies, but
Model-0, giving the mean ecosystem responses to tempera-
ture, light, moisture, and seasonality, could account for only
40—-50%. Evidently interannual responses of NEE are signi-
ficantly driven by changes in the underlying physiology of
the ecosystem, which itself responds to climatic factors.

[s6] Significant long-term trends of increasing NEE, GEE
and R are apparent in the HFEMS flux data, and the Model-0
analysis indicates that these trends are not driven by decadal-
scale trends in climate or growing season length, as in the
case of annual anomalies. Instead, the trends in NEE, G, and
R appear to reflect fundamental changes in the ecosystem
over the past 13 years. The increased uptake of CO,, most
pronounced since 2000, was clearly associated with in-
creased leaf area and canopy photosynthetic capacity. The
acceleration of uptake since 2000 is especially surprising
given the age (75—110 years), composition (northern red
oak, red maple), and rather poor soils at this site. Most
silvicultural tables would predict slowing of forest growth,
based on increasing competition for limiting resources in
the stand, or on limitations of hydraulic conductivity with
respect to the size of individual trees. Decreasing net
productivity in mature stands is often postulated to follow
when LAI reaches a maximum, because respiration costs of
tissue construction and maintenance continue to increase as
trees grow [cf. Waring and Schlesinger, 1985]. Although
we cannot be sure that LAI at HFEMS will not increase
further, the observed plateau suggests that the maximum
has been reached (Figure 4).

[57] Other explanations must be sought to explain the
crucial and surprising increase in canopy photosynthetic
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capacity (> 50% larger now than in 1992). A protracted
rebound from the disturbance of 1998 would not explain the
trend since 1992. We think that the potential for growth and
accumulation of carbon for this type of Northern ecosystem
may be greater than previously thought, as suggested by
Medvigy [2006]. The increasing dominance and basal area
of Northern Red Oak at the site is clearly a factor, related to
long-term succession: red oak photosynthetic capacity is
twice that of red maple [Bassow and Bazzaz, 1997]; red
maple is the second most abundant tree. Simple scaling of
HFEMS uptake by this factor, weighted by the increase in
red oak in the forest, is sufficient to explain the observed
trend of NEE and GEE. We also cannot rule out some
growth acceleration in response to rising CO,, and possibly
other factors such as nutrient inputs.

4. Conclusion

[s8] The HFEMS long-term eddy-flux and biometry
study shows that the short-term (hourly, monthly) rates of
ecosystem photosynthesis are closely linked to light and
temperature, consistent with expectations from leaf-level
studies. Water stress has unexpectedly small impact on this
ecosystem, restricted to the late summer in dry years.
Limitations of water supply to the canopy are small, but
evident throughout the growing season, and our matric
potential model links this effect to stem and/or root con-
ductance, rather than VPD or restricted soil moisture.
Within a season, ecosystem respiration does not respond
to temperature, also an unexpected result that may reflect
the heterogeneity of the temperature response for respiring
components of the forest.

[s9] NEE exhibits significant interannual variability, due
to variations in GEE. Clearly several years of data are
needed just to define the mean rates of carbon exchange
or to quantify mean responses to climate variability. With
13 years of data we were able to identify disturbance-related
anomalies and their legacies, and to measure the underlying
trends toward greater rates of net uptake, increased photo-
synthetic capacity, and higher rates of ecosystem respira-
tion. These trends are surprising given the age of the forest.
Changes in growing season length or similar climatic trends
appear not to be primary driving factors. Likewise, current
ecosystem models do not appear to capture the long-term
aspects of the data. The notable increase in red oak AGWB
could account for most or all of the acceleration of uptake
and enhancement of canopy efficiency. The course of
succession at the site could possibly have been influenced
by recovery from gypsy moth defoliations in the 1980°s,
since the oaks were preferred by the caterpillars, but if
recovery from that disturbance were the main driver, we
would expect to observe more response early in the record,
rather than at the end.

[60] The forest stand age at which CO, uptake slows
down, creating a carbon steady state is one of the most
important factors determining the total magnitude of the
future forest sinks of atmospheric CO,. It may seem
unlikely that the trend of the last 13 years could continue
for a long time, allowing Harvard Forest NEE, GEE and R
to approach values previously found only at lower latitudes.
Classical ecosystem dynamics and carbon-accounting mod-
els [Houghton et al., 1983] predict that the forest carbon
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uptake should soon decline, and eventually GEE will be
balanced by respiration (NEE = 0 [e.g., Gower et al., 1996;
Ryan et al., 1997]), or overbalanced by increasing mainte-
nance respiration.

[61] The current results call these accepted ideas into
question. Possibly Northern forests have greater than the
expected capacity to take up CO, over the long term. We do
not have suitable examples of old forests of this type, in
current climate, to predict how long we can expect the forest
to continue accumulating carbon, how much can be accu-
mulated in total, or how long accumulated carbon will
remain sequestered. In order to predict the course of forest
carbon sequestration, better understanding of tree life his-
tories, land use and disturbance history, and detailed knowl-
edge of resource limitation in many types of stands are
required. There is little doubt that succession is playing a
role in the increased carbon sequestration in this forest,
while climate change appears to be much less important.
The combination of flux data over long periods with long-
term data sets on stand structure, dynamics, allocation and
growth, appear to offer the most potent tools for assessment
of these questions.

[62] Recent observations of growth increase in long-term
tropical forest plots [Baker et al., 2004; Lewis et al., 2004]
have raised similar questions, with several possible explan-
ations (e.g., recovery from ENSO disturbances, increased
CO,, changing light regime), but no dominant rationale.
This will evidently be a key factor in predicting the future
role of forests in the global carbon cycle.

Appendix A: Climate Drivers

[63] Supplemental climate data, comprising daily precipi-
tation totals, snowfall, and minimum and maximum air
temperature have been obtained from the Shaler and Fisher
meteorological stations (http://harvardforest.fas.harvard.
edu/hfmet/) (located 1500 m from the tower and station)
and several surrounding weather stations [National Climatic
Data Center, 2006]. Hourly and daily precipitation and
cloud cover data from Orange Airport (<10 km N-NW
from tower) for April 1995 forward have also been used
[National Climate Data Center, 2006].

Al. PAR

[64] When available, gaps in the hourly above-canopy
PAR data set were filled using PAR measurements taken on
the HFEMS tower by the ASRC—SUNY research group.
For periods in 2001—-2004 when measurements are not
available from either the Harvard or ASRC PAR instru-
ments, the hourly global solar radiation measurements or
PAR from the Fisher meteorological station (operational in
February 2001) were used to estimate above-canopy PAR at
the HFEMS site. In December 2003 a PAR sensor was
added to the Fisher meteorological station and missing PAR
observations are replaced with Fisher station data directly.
When the ASRC and Fisher radiation data are included,
only 1145 hours of PAR observations are missing for the
entire November 1991 to December 2004 time period.
These remaining gaps in hourly PAR data were filled using
the mean diurnal PAR cycle for a 30-day window centered
on the day with missing data.
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Table Al. Names and Locations of Meteorological Stations
Providing Data to Estimate Daily Precipitation at HFEMS When
Measurements at the Shaler or Fisher Meteorological Stations Were
Unavailable

Station Name Station Identification Latitude Longitude
Orange 54756 42.567 —72.283
Tully Lake 198573 42.633 —72.217
Birch Hill Dam 190666 42.633 —72.117
Gardner 193052 42.583 —71.983
Barre Falls Dam 190408 42.433 —72.033
Hardwick 193401 42.350 —72.200
New Salem 195306 42.450 —72.333

A2. Air Temperature

[65] Missing hourly measurements in the 27 m and 2.5 m
air temperature data set were filled using appropriately
adjusted measurements from adjacent levels in the air
temperature profile, the sonic anemometer, or the Fisher
meteorological station. Prior to the establishment of Fisher
meteorological station, when profile or sonic anemometer
data was unavailable, the daily mean air temperature mea-
sured at Shaler meteorological station and the 10-year mean
diurnal temperature cycle for a 30-day window centered on
the day with missing data were used to estimate missing
hourly air temperatures.

A3. Precipitation

[66] Daily precipitation totals were obtained from the
Fisher and Shaler meteorological station records. Missing
data in the Fisher and Shaler precipitation records was filled
using a distance-weighted average of several surrounding
meteorological stations [National Climate Data Center,
2006]. Station locations are given in Table Al.

Appendix B: Gap Filling and Time Integration

[67] Equipment failure and data rejection reduce the aver-
age annual data coverage of our continuous eddy covariance
measurements of NEE to about 50%, a fraction typical of
continuous eddy covariance measurement sites [Falge et al.,
2001a]. A malfunctioning data acquisition system resulted
in the loss of canopy CO, storage data for two extended
periods in 1997 and 2002, while occasional malfunctioning
of the CO, profile sampling system created additional,
shorter duration gaps in the canopy CO, storage data set.
For periods lacking canopy CO, storage data, hourly NEE
(NEE = FCO, + change in canopy CO, storage) was
derived by summing FCO, observations with a seasonally
varying, hourly mean storage term.

[68] Three variants of time integration algorithms: non-
linear regression, look-up tables, and diel mean cycle [Falge
et al., 2001a], were used to estimate monthly, seasonal and
annual sums of NEE, R, and GEE. The nonlinear regression
technique is based on combining a Van’t Hoff function for
temperature dependence of respiration with a Michaelis-
Menten function to account for photosynthetic response to
light. Observations of NEE, PAR and air temperature (T)
were used to optimize the equation parameters for approx-
imately 30-day periods, and missing observations of NEE
were estimated using the optimized equation. The look-up
table method divided the data set into approximately two-
month periods and classified observations of NEE accord-
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ing to PAR and T. For each period, observed NEE was
averaged according to class, creating a table from which
missing NEE observations could be estimated on the basis
of environmental conditions (PAR and T). The diel mean
cycle method divides NEE data into 5-day blocks within a
15-day window. Valid NEE observations were averaged by
hour of the day, and missing NEE data for the 5-day block
were estimated using the mean for the appropriate hour. If
needed the 15-day window was expanded to ensure at least
3 valid NEE data for each hour of the 24 hours.

[69] None of the three methods exhibited a relative bias in
annual sums. The simple average of the three time integra-
tion methods yields uncertainties in NEE annual sums
which are lower than that of any single individual method.
We have chosen the three-method average as the best
estimate of time integrated NEE, R, and GEE.

[70] Random sampling of the NEE error populations was
used to determine the uncertainties in annual sums of NEE.
Each ecological year was divided into 12 periods (6 seasons,
day and night). Uncertainties for gap filled hours were
estimated by randomly drawing from the error population
defined by hours with valid NEE observations (NEE  pserved
— NEEcgimatea)- The mean difference between observations
and estimates was 0. The uncertainties for valid hourly NEE
observations were estimated by randomly drawing errors
from a double exponential probability distribution with shape
factors for daytime and nighttime measurements from
Richardson et al. [2006]. For each ecological year, 3000
simulations were used to define the 95% confidence intervals
reported for the annual sums of NEE.

B1.

[71] Nonlinear regression techniques typically involve the
use of a temperature function [Lloyd and Taylor, 1994] and a
light response curve [cf. Falge et al., 2001a], representing
ecosystem respiration and photosynthetic carbon assimilation,
respectively. For gap filling daytime hours we have employed
the sum of a Van’t Hoff function (term 1, equation (B1)) and a
Michaelis-Menten function (term 2, equation (B1)), while the
gap filling of nighttime hours used a Michaelis-Menten
function alone (i.e., set term 2 in equation (B1) = 0).

a3*PAR
as + PAR’

Nonlinear Regression

NEE = ag* expla; (T — (T))] + PRI* (B1)

[72] The complete time period from 28 October 1991
through 31 December 2004 was divided into 10-day blocks.
For a 30-day window about the center of each 10-day block,
valid observations of FCO,, PAR, and T, were used in to
optimize the parameters in equation (B1), which then
provided an estimate of missing FCO, during the 10-day
block. Daytime and nighttime were treated separately.
During the dormant season, term 2 of equation (B1) was
simplified to a linear PAR response. Respiration during the
night and dormant season (DOY > 340 or DOY <61) was
taken as the gap filled NEE (observed or estimated FCO,).
Daytime R outside the dormant season was estimated using
term 1 of equation (B1) optimized using nighttime data.
Employing FCO, (not NEE) to estimate R introduces a
systematic bias. Daytime estimates of ecosystem respiration
are based on nocturnal observations of NEE(= R).
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Table B1. Calendar Year Sums of NEE, R, and GEE at Harvard
Forest From 1992-2004"

Annual
Calendar Year NEE R GEE
1992 —1.6 10.1 —11.7
1993 —1.8 11.8 —13.6
1994 -1.7 10.6 —12.4
1995 —-2.8 9.7 —12.5
1996 —-1.9 11.3 —13.3
1997 —1.6 124 —14.0
1998 —1.6 10.6 —12.1
1999 -2.1 11.9 —14.0
2000 —2.6 11.9 —14.5
2001 —4.3 12.1 —16.4
2002 2.7 124 —15.1
2003 -2.1 13.2 —15.4
2004 —4.6 12.5 —17.1
Data are in Mg-C ha~' yr ",
B1.1. Look-Up Table

[73] The look-up table method [Falge et al., 2001a]
involved dividing the data set into approximately 2-month
periods and for each period creating a table from which
missing FCO, could be estimated on the basis of environ-
mental conditions. For each 2-month period daytime hours
were assigned to different classes of air temperature (defined
on 4°C intervals) and PAR (defined on ~150 ymol m 2 s~
intervals) while nighttime hours were classified by air tem-
perature alone (defined on 2°C intervals). Mean values of
FCO, were then calculated for each class of PAR and T (or
T alone for nighttime observations). Gaps in the look-up
tables were filled using linear interpolation. Missing hourly
FCO, observations were filled using the appropriate look-up
table. Nocturnal and dormant season (DOY > 340 or DOY
<81, 7 December to 21 March) daytime FCO, was taken as the
ecosystem respiration (i.e., R = FCO,). Respiration during the
growing season daytime was estimated using the nighttime
look-up table with linear interpolation to higher temperatures.

B1.2. Diel Cycle

[74] The data set was divided into 5-day blocks and for a
15-day window about each 5-day block, valid FCO, obser-
vations were averaged by hour of the day. When necessary,
the 15-day window was expanded to ensure a minimum of
3 valid FCO, observations for each hour of the day for the
averaging period. Missing FCO, observations for a given
5-day block were estimated using the appropriate hourly
mean. Windows of variable width about the 5 blocks were
tested. Nocturnal and dormant season (DOY > 341 or DOY
<80, 7 December to 21 March) daytime FCO, was taken as
the ecosystem respiration (i.e., R =FCO,). Daytime, growing
season R was estimated as the mean of the gap filled,
nighttime FCO, for a given 5-day bin; R is assumed to be
independent of temperature.

B2. Nonparametric Gap Filling

[75] In order to compare temporally aggregated modeling
predictions with observed NEE, we have employed a nonpara-
metric gap filling scheme which is independent of Model-0
drivers (i.e., PAR and T, see below). Valid, u* - filtered
observations of FCO, and canopy CO, storage were averaged
by hour of the day according to 5-day bins, creating 5-day
aggregates. Gaps in the 5-day aggregates were filled using
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bivariate interpolation. Similarly, 5-day aggregates of Model-0
predicted NEE were also created, using only hours when valid,
u* - filtered FCO, observations were available. For each 5-day
aggregate of observed storage, a constant was added to each
hour to ensure canopy storage of CO, summed to zero for that
5-day period, while preserving the diel pattern. Five-day
aggregates of observed NEE were created via summation of
the FCO, and CO, storage 5-day aggregates.

B3. Calendar Year Annual Sums

[76] Calendar year annual sums of NEE, R, and GEE are
provided in Table BI.

Appendix C: Explanation of Model-0 Seasons

[771 The ecological year begins on 28 October (DOY
301), roughly 2 weeks after the end of the growing season
(defined as the fall inflection in the NEE cumulative sum
trace; see Figure 16) and runs through 27 October of the
following calendar year. The significant correlation between
NEE in the months of December and January was the
primary motivation for our departure from calendar year.
The late fall season (DOY 301-340) is the first Model-0
season of the ecological year, covering final descent of the
ecosystem from the growing season into the long period of
winter dormancy from early December into early April
designated as the winter season (DOY 341-100). The early
spring season commences shortly after the mean thaw date of
the soil in the vicinity of the HFEMS tower and begins the
ecosystem transition from dormant season to growing season.
During the early spring season, thawing soils and daily mean
air temperatures exceeding 4°C allow for the onset of regular
conifer photosynthesis; the snow cover ends and canopy
deciduous foliage begins to emerge. The canopy changes
rapidly in the late spring when the bulk of canopy develop-
ment occurs. By DOY 160 the leaf area is near the annual
maximum and ecosystem is a net sink for CO,. The period
beginning with the time of full canopy development through
the onset of senescence, roughly DOY 161-250, is the peak
growing season. Carbon uptake reaches the annual maximum,
and following a brief plateau begins a gradual decline
coincident with decreasing insolation, foliar aging and the
approach to minimum soil moisture. The peak growing season
has been divided into the seasons of early and mid summer.

[78] The complex ecosystem transition from mid growing
season into winter dormancy has been captured with
3 seasons. The late summer season coincides with the onset
of senescence, signaled by the increase in canopy PAR albedo
from the broad summer minimum (D. Fitzjarrald, ASRC—
SUNY, personal communication, 2002; data available at ftp://
ftp.as.harvard.edu/pub/nigec/SUNY fitzjarrald/) [Moore et
al., 1996], typically beginning around DOY 250. The daily
mean ecosystem uptake of CO, begins a rapid decline
between DOY 250 and 260, with the ecosystem usually
becoming a net source of CO, by DOY 280, around the time
when the foliage is at peak color (J. F. O’Keefe, personal
communication, 2002) and the PAR ratio starts to decrease
rapidly, signifying a loss of canopy leaf area. Fifty percent of
leaf fall typically occurs by DOY 300 for the dominant
canopy species (red oak; DOY 285 for red maple; J. F.
O’Keefe, personal communication, 2002). The early fall
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season runs from the later portion of the senescence period
until leaf abscission is well under way (DOY 276-300).

[79] The onset of canopy emergence and rate of canopy
development is highly variable from year to year, according
to ground-based (J. F. O’Keefe, personal communication,
2002), and remote sensing [cf. Xiao et al., 2004] pheno-
logical observations, in agreement with the PAR ratio (the
midday ratio of above-canopy PAR to below-canopy PAR)
measured at the HFEMS tower. The majority of canopy
development occurs during the late spring and a PAR ratio
index (PRI) was developed to account for interannual
variability in canopy development,

(PR — PRmin)

PRI = .
P Rmax - P Rmin

(C1)

[s0] Inequation (C1), PR is the daily, smoothed PAR ratio,
and PR,,;, and PR, are the PAR ratio prior to (DOY 90—
120) and after completion of canopy development (DOY
170-205), respectively. The annual minimum and maximum
PR are used to compute the PRI for each late spring, an
approach that assumes the fully developed canopy is equiv-
alent from year to year. The PRI ranges from 0 to 1 during the
late spring and is set to 1 during other seasons.

Appendix D: Soil Moisture Algorithms

D1. Bucket Model of Soil Moisture

[81] Continuous soil moisture measurements over the full
study period at HFEMS are not available. Soil moisture
profiles have been measured at two locations in the vicinity
of the EMS tower since 1997 (K. E. Savage and E. A.
Davidson, personal communication, 2000). Soil water con-
tent was measured as ~6 hour averages using TDR probes
inserted horizontally into the soil at 4 levels, in both well
drained upland and poorly drained wetland soil plots located
150 m NW and 150 m SW of the EMS tower, respectively
(K. E. Savage and E. A. Davidson, personal communication,
2000). We used these soil moisture profiles for 1997—1999 to
parameterize a simple two-layer bucket-type soil hydrology
model, intended to capture the relative variability of soil
moisture at Harvard Forest during the growing season.

[s2] This soil moisture profile data set (1997—1999) was
used to parameterize a simple two-layer bucket-type soil
hydrology model. The bucket model design is loosely based
on the water balance methodology used to calculate Palmer
soil drought indices [Palmer, 1965], with the soil profile
divided into a shallow “surface layer” and a deep “under
layer” (see Figure D1). Model simulations of surface layer
and under layer volumetric soil moisture content span the
growing season (DOY 100-300) with a 5-day time step.
Five-day sums of latent heat flux, measured on top of the
HFEMS tower, and precipitation, measured at the Shaler
meteorological station, are the bucket model driving variables.

[83] Four adjustable model parameters define the water
capacity of the soil, control the flux of water between the
soil and the atmosphere, and regulate the transport of water
from the surface layer into the under layer. Two additional
model parameters control water loss from the under layer
during periods of extreme water loss. The depth of the
bucket model layers were fixed to match the depth of the
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Figure D1.

soil moisture profiles measurement pits. The bucket model
parameters were optimized to match the model-predicted
volumetric soil moisture with the 1997—1999 in situ meas-
urements of the volumetric soil moisture profile (K. E.
Savage and E. A. Davidson, personal communication,
2000). An independent set of optimized model parameters
was derived for each soil moisture type (well-drained soil
and poorly drained soil). Parameter optimization was
achieved using the genetic algorithm [Carroll, 1996].

[s4] Optimized model parameters and calibration statis-
tics are given in Table D1. Model predictions and observa-
tions are shown in Figure D2. The purpose of the bucket
model is not to estimate absolute values of soil moisture, but

Schematic diagram of the soil moisture bucket model (see Appendix D).

to capture the relative variability of soil moisture at Harvard
Forest during the growing season. The simple bucket model
captures about 80% of the observed variability in the
surface and under layer soil moisture during the 1997—
1999 growing seasons, suggesting the bucket model is
sufficient for quantifying relative soil moisture variability
over the 1992-2003 growing seasons. Model simulations
for the entire 1992—2003 period are shown in Figure D3.

D2. Model-0 and Soil Moisture

[85s] Two modified forms of the Model-0 equation were
explored in an initial investigation of the soil moisture—
NEE link at Harvard Forest. The first modified Model-0

Table D1. Optimized Parameter Values and Calibration Statistics for the Bucket Soil Hydrology Model®

Surface Layer Underlayer
Wi W2 a b und buff . ag a 2 ag a
Well-drained soil 24 142 0.11 1.75 70 0.20 0.75 —0.02 1.10 0.87 —0.02 1.18
Poorly drained soil 49 151 0.23 0.86 122 0.82 0.88 0.00 0.89 0.92 0.04 0.89

W1, W2, a, b, undt, and buff are hydrology model parameters (see Figure D1). Parameters W1 and W2 are the maximum water content (in units of
millimeters) of surface layer (W1) and underlayer (W2). Parameters a, b, buff (unitless), undt (units of mm H,O) control water exchange; see text and
Figure D1 for details. Here a0 and al are the intercept and slope for linear regression of the model predicted volumetric soil moisture versus the observed
volumetric soil moisture (Observed = a0 + al*Predicted) and 12 is the coefficient of determination for the regression.
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Figure D2. Calculated (open symbol) versus observed (solid symbol) [Savage and Davidson, 2001]
soil moisture in the lower layer of the soil moisture model (see Figure D1), for years with frequent soil
moisture observations. Units are mm> H,O mm > soil.

equation, Model-0a, includes a function of soil moisture
that may be interpreted as an additional respiration term
(equation (D1)) and was designed to test for a soil moisture
role in regulating ecosystem respiration. A second realization
of Model-0, Model-0b (equation (D2)), multiplies the GEE
term of the Model-0 equation by a soil moisture stress factor
[Foley et al., 1996].

[s6] The modified versions of Model-0 employ volumetric
soil moisture, the soil moisture measure estimated with the
soil hydrology model. However, soil moisture impacts soil
respiration and photosynthesis through the soil water matric
potential (¥), which has a power law dependence on volu-
metric soil moisture and is expressed via soil water retention
curves. Soil water retention curves have been measured for
several soil plots at Harvard Forest (K. E. Savage and E. A.
Davidson, personal communication, 2000), but for the initial
soil moisture—NEE modeling exercise we employed expo-

nential functions of volumetric soil moisture which mimic to
some extent the § —V relationship.

a3*PAR
NEE = T— (T B+ PRI*——— D1
ay + as| ()] + B+ as + PAR (D1)
a3*PAR
NEE = T—(T C*PR[* ——————
@ +all =(T)]+ as + PAR’

(o)

(D2)
l—exp ()

e
; 1 —exp 9

B = as* exp(ac*Oy)
[87] In equations (D1) and (D2), parameters a;—a, and
the drivers T, <T>, PAR, and PRI are defined as in the
Model-0 equation (see above). The terms B and C define
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Figure D3. Calculated soil moisture in the lower layer of the soil moisture model for 1992—-2003 at

Harvard Forest. Note the dry anomalies in 1995, 1998, and 1999 with soil moisture dipping below 0.09.
On the other hand, soil moisture in the summer of 1994 never dropped below 0.13.

response to soil moisture in Model-0a and Model-0b,
respectively. Here O is the soil moisture deficit of the
surface layer in mm of H,O, 6; is the under layer soil
moisture in terms of fractional field capacity (0—1), and as,
ag, a; are fitted parameters. Using nine years (1992—-2000)
of hourly, u* filtered NEE, T, PAR and reconstructed soil
moisture observations, optimized parameters were derived
for both Model-0b and Model-0a for the early, mid, and late
summer seasons using a nonlinear least squares routine.
[s8] The results for Model-0a and Model-Ob were con-

NEE in midsummer by reducing modeled CO, uptake under
dry soil conditions; however, the models failed to capture
the afternoon depression in CO, uptake.

[s9] To improve simulation of the physiological response of
the ecosystem to soil moisture in the midsummer, a hydraulic
resistor-based model of canopy water potential was coupled
with a modified Model-0 equation (equations (D3) and (D4)).
The data sets for NEE and driving variables (¥, PAR, T)
were divided into 5-day aggregates, each of 24 hours
(Appendix B). Water retention curves (K. E. Savage and

sistent. The optimized models improved model accuracy for E. A. Davidson, personal communication, 2000) were used to

Table D2. Midsummer Model-0 and Modified Model-0 With Moisture Stress Parameter (Model-Oc) Optimized Parameters and Predicted
NEE Versus Observed NEE Statistics for Hour and Season Timescale®

Model-0/Model-Oc Parameters

al a2 a3 a4 as A B Tmean mean V¢
Model-0 3.78 0.31 —40.0 879 NA NA NA 18.2 NA
Model-Oc 4.35 0.03 —56.0 1033 0.05 0.02 0.08 18.2 —4.87
Model-0/Model-Oc Fit Statistics
N <obs> MAE RMSE b0 b0.se bl bl.se R rsq
Hour Timescale
Model-0 1944 —4.02 2.16 2.93 0.00 0.07 1.00 0.01 0.95 0.90
Model-Oc 1944 —4.02 1.95 2.59 0.00 0.06 1.00 0.01 0.96 0.92
Season Timescale
Model-0 9 —4.02 0.48 0.56 —0.95 2.56 0.76 0.63 0.41 0.16
Model-Oc 9 —4.02 0.24 0.34 0.71 1.14 1.18 0.28 0.84 0.70

?Goodness of fit is computed on the basis of 5-day aggregates, which is the time step for estimating soil moisture from transpiration and precipitation. N
is number of valid observations used in calibration. Units are as follows: al, umoleCO, m2s7 Y a2, pmoleCO, m2s! degC’l; a3, umoleCO, m2s7l;

>

a4, pmole-photons m2s ;a5 MPa~!; A, MPam’ s umoleCO[l hr~'; B, hr ';mean T, °C; mean Ve, MPa; <obs>, MAE, pimoleCO, m 2 s~ '. Here

<obs> is mean of observations, RMSE is root mean square error, MAE is mean absolute error, and r is correlation coefficient; rsq = jaa:((gfi )), where var(res) is
variance of residuals and var(obs) is variance of observations; b0 and bl (b0.se and bl.se) are intercept and slope (standard error) for linear regression of

Model-0/0c predicted NEE versus observed NEE (NEE,s = a0 + al *NEE ).
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Figure D4. Predicted and observed daily pattern of NEE for mid summer. (top) Mean diurnal cycle
observed and computed by Model-0 and Model-Oc, in 1999, a dry year. (bottom) NEE versus incident
light in a year with relatively dry soils (black, 1999) and wet soils (red, 1994, note offset by —5 pmole
m s~ for clarity), showing suppression of photosynthesis for given light level in the afternoon.

convert the hydrology model-estimated volumetric soil mois-
ture to matric potential (Us). The daily canopy water potential
was assumed to behave periodically and is estimated using
equation (D3). The canopy matric potential (¥¢) was inclu-
ded as an additional term in the original Model-0 equation
that modifies gross carbon assimilation (equation (D4)).
Equations (D3) and (D4) were solved iteratively to obtain
the optimized parameter set.

dv
TzC: (Ug — We)*B — A*E (D3)
*PAR
NEE = ay + ay[T — (T)] + {1 + as*Tc }* -2 (D4)

ag + PAR ’
In equation (D3),

a3*PAR

E= {1+ a5y} B 20
{1+ as™bel =

[90] In the hydraulic resistor equation, equations (D3) and
(D4), ¥g and Y are the matric potential of the soil and
canopy, the product EA is the canopy water transpiration
rate, and B is the RC time constant for refilling the canopy
with water. Model-Oc uses GEE as a proxy for the canopy
transpiration flux and parameter A is equivalent to 1/(aC),
where C is the canopy water capacitance and « is the
canopy water use efficiency. The parameter as controls the
direction and magnitude of the W influence on NEE.

[01] Model-Oc improved model accuracy for NEE in
midsummer by reducing modeled CO, uptake under dry
soil conditions. The output of Model-0 with canopy matric
potential is a significant improvement over the basic
Model-0 on the season timescale, yielding a 45% reduc-
tions in RMSE and capturing ca. 70% of NEE interannual
variability on the seasonal scale (Table D2). Model-Oc
even captured much of the diel cycle of NEE; under both
dry (1999) and wet (1994) conditions, Model-Oc captures
the observed afternoon depression of NEE and the mean
NEE diurnal cycle (Figure D4).
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